منابع مشابه
On strongly Jordan zero-product preserving maps
In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...
متن کاملLinear maps preserving or strongly preserving majorization on matrices
For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...
متن کاملIteration of order preserving subhomogeneous maps on a cone
We investigate the iterative behaviour of continuous order preserving subhomogeneous maps f :K→K, where K is a polyhedral cone in a finite dimensional vector space. We show that each bounded orbit of f converges to a periodic orbit and, moreover, the period of each periodic point of f is bounded by βN = max q+r+s=N N ! q!r!s! = N ! ⌊ N 3 ⌋ ! ⌊ N + 1 3 ⌋ ! ⌊ N + 2 3 ⌋ ! ∼ 3 N +1 √ 3 2πN , where ...
متن کاملExtension of order-preserving maps on a cone
We examine the problem of extending, in a natural way, order-preserving maps that are de ̄ned on the interior of a closed cone K1 (taking values in another closed cone K2 ) to the whole of K1 . We give conditions, in considerable generality (for cones in both ̄niteand in ̄nite-dimensional spaces), under which a natural extension exists and is continuous. We also give weaker conditions under which ...
متن کاملOn Preserving Properties of Linear Maps on $C^{*}$-algebras
Let $A$ and $B$ be two unital $C^{*}$-algebras and $varphi:A rightarrow B$ be a linear map. In this paper, we investigate the structure of linear maps between two $C^{*}$-algebras that preserve a certain property or relation. In particular, we show that if $varphi$ is unital, $B$ is commutative and $V(varphi(a)^{*}varphi(b))subseteq V(a^{*}b)$ for all $a,bin A$, then $varphi$ is a $*$-homomorph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1978
ISSN: 0024-3795
DOI: 10.1016/0024-3795(78)90034-4